MY PATREON ACCOUNT

MY PATREON ACCOUNT:

SCROLL DOWN TO THE BOTTOM FOR CONTENTS, OTHER POSTS, "MOST READ", IMAGES, ETC.

Friday, 18 September 2020

Merely Verbal Ado About Nothing: David Chalmers, Facts, Consciousness


 

Contents: i) Introduction ii) The Facts and What We Say About Them iii) Stipulation Examples: iv) A Random Cup v) Is a Virus Alive? vi) First-Person Data vii) Eliminative Materialists vs. Reductive Functionalists viii) Causation ix) Bridge Laws x) Conclusion: Facts Matter and Consciousness

The title of this piece is partly based on David Chalmers’ paper ‘Verbal Disputes’. However, I relied far more on Chalmers’ book The Consciousness Mind: In Search of a Fundamental Theory than I did on his ‘Verbal Disputes’. (This paper is very long — 48 pages — and it covers many subjects.) Chalmers also gave a seminar on this subject; which can be found on YouTube here (see image above).

Many philosophers have tackled the “problem” of whether certain philosophical issues are “merely verbal disputes” or not. This debate goes back through the centuries. (Perhaps it was best highlighted by the logical positivists in the 1920s and 1930s.) In terms of contemporary philosophy, the notion that some philosophical issues are merely verbal has often been leveled at what is now called “analytic metaphysics”. Chalmers himself tackles some of these issues. (For example, he discusses whether a random booklike x is a book. Or, to use the contemporary jargon, is it only a collection of “particles arranged” bookwise?) However, Chalmers himself never names names and he certainly doesn’t use the term “analytic metaphysics”.

The Facts and What We Say About Them

Philosophy-scientist Smith has access to all the facts, laws, information, etc. about spatiotemporal slice (or state of affairs) A and says that it is x, y and z. Philosopher-scientist Jones has access to all the same facts about the same spatiotemporal slice (or state of affairs) A and says that it is a, b and c. Yet both Smith and Jones agree on the facts. This must mean that what Smith and Jones say about A is over and above the facts. In addition to facts, Smith and Jones needed to bring in theory, conceptual decisions, prior semantics, etc. into the discussion.

The given facts may well be determinate; though it doesn’t follow from this that what we say about them is also determinate. Or, in another manner of speaking, the facts alone don’t entail what we say about them…

But hang on a minute.

One may now wonder how this clean and neat distinction between facts and what we say about them can be upheld. After all, aren’t the facts (or what we take to be the facts) themselves somewhat dependent on what we say? David Chalmers himself doesn’t only argue that what we say is indeterminate. He also argues that “the facts [themselves] are indeterminate”.

Much of what’s just been said is fairly standard in science and in the philosophy of science. That is, the very same facts (or data) may engender different theories. Indeed some philosophers have argued that the very same facts (or data) could engender a (possible) infinite amount of theories. This situation is called the underdetermination of theory by the data and has been widely discussed in analytic philosophy.

And here again we can question the clean and neat separation of empirical data from the theories which, it seems to be supposed, come later.

Stipulation

Now Chalmers often mentions what he calls “stipulation”. The basic point is that if we stipulate what we mean by a particular word, then the answers to the questions about facts, data, what x is, etc. must — at least partly — follow from such stipulations. Of course some people will be horrified by the argument that acts of stipulation are decisive when it comes to what we take to be matters of fact. But it’s not that simple.

There is a problem with over-stressing the importance of stipulation; or even with simply emphasising the importance of stipulation at all. Chalmers sums up this problem with a joke. He writes:

“One might as well define ‘world peace’ as ‘a ham sandwich.’ Achieving world peace becomes much easier, but it is a hollow achievement.”

As it is, Chalmers only applies his joke to a single case: consciousness. So perhaps it can also be applied to other cases (such as the later cases of a random cup/book, virus, etc.). Clearly, even someone who argues that stipulation is important won’t also accept that we can define the words “world peace” as “a ham sandwich”. In turn, some philosophers and laypersons will feel just as strongly about claiming that, say, a “computer virus is alive” or that “bacteria learn”. The philosopher P.M.S. Hacker, for example, holds a very strong position on the philosophers and scientists who use such terms (or words) in ways that are radically at odds with everyday usage (see Hacker’s ‘Languages, Minds and Brain’ in Mindwaves). Many physicists, on the other hand, are very keen on using old words (or terms) in very different ways. (Think here of “information”, “space”, “time”, “intelligence”, “law”, “string”, “hole”, etc.)

Some Examples

A Random Cup and a Random Book

Let’s look at some more examples from David Chalmers. He asks:

“Is a cup-shaped object made of tissues a cup?”

The problem here is that it’s not clear if Chalmers meant toilet tissues or biological tissues in this example. In the former case, then, toilet tissues wouldn’t hold liquid. Thus, surely by definition, any x made out of toilet tissues couldn’t be a cup… Or could it?

What about biological tissues which could hold liquid?

In any case, let’s take it that whatever Chalmers meant by “tissues”, these tissues can indeed hold liquid.

Now take this question:

Is it the case that if any x functions as a cup, then surely it is a cup?

Here’s another question:

What if this cup-shaped (or particles arranged cupwise) object wasn’t designed to be cup?

Does that matter? If it holds liquid, and it even looks like a cup, then surely it is a cup. Why does it matter that it wasn’t designed to be a cup? Is whether it does or doesn’t matter a purely stipulative matter? In other words, is the following the case? -

x can only be classed as a “cup” if it were designed to be a cup.

This would mean that any natural object which were used as a cup could never be classed as a “cup” or even be a cup. Yet all sorts of natural things are used as functional devices which we then name according to their functions (e.g., a stick classed as a “weapon”, extracted venom classed as “poisons”, etc.). Does their natural status stop them from being named as functional devices (such as weapons)?

In any case, whether people call x a “cup” or not, they’re all still talking about the same x. Not only that: in the tissue-cup case, all people agree that it looks like a cup and can be used as a cup. The only difference, then, is what Chalmers calls “terminology”.

Here’s another question from Chalmers:

“Is a booklike entity that coagulated randomly into existence a book?”

This is like the infinite monkey theorem in which, after an infinite amount time in which an infinite amount of monkeys play with a typewriter, at least one of them will produce the complete works of Shakespeare. (In an infinite amount of time, surely an infinite amount of monkeys will produce the entire works of Shakespeare an infinite amount of times.) Such is the nature of the logical possibility which Chalmers is so keen on.

In any case, I presume that Chalmers doesn’t only mean book-shaped or arranged bookwise. Surely something that’s simply shaped like a book can’t be a book. That’s because, after all, it may not have any words in it. Then again, if stipulation rules, then why can’t shape alone be a necessary and sufficient condition for bookhood?

But let’s say that this random book does contain words. Not only that: it contains words which make sense. Here again we can ask the following question:

Is it relevant that this “booklike entity” is natural and wasn’t produced to be a book?

After all, if it looks like a book and contains grammatical sentences, a coherent story, etc., then surely it must be a book.

Is a Virus Alive?

David Chalmers tackles the case of whether or not a virus is alive. He writes:

“On theory might hold that a virus is alive, for instance, whereas another might hold that it is not, so the facts about life are not determined by the physical facts… the facts about life are indeterminate.”

One can’t read off from the facts alone whether or not something is alive. In other words, there’s more to being alive than the facts. To use Chalmers’ term, the facts may well be determinate; though what we say about them isn’t.

Let’s say that everyone agrees that a virus moves. Everyone may agree on its genetic structure. Etc. But it doesn’t follow from all these facts that everyone also agrees that the virus is alive. Some philosophers or scientists may see the virus as being a (biological) machine and therefore neither alive nor dead. (Though why would a virus’s machine-like nature automatically mean that it’s not alive?) To take another extreme interpretation. Some philosophers may even see the virus as being a simulation or simply a projection of our minds.

But what of a computer virus? Chalmers asks:

“Is a computer virus alive?”

This taps into the ancient debate of vitalism. Perhaps those same arguments should also be used to show that computer viruses are either alive or dead. It may be more complicated this time around; though functional, structural and physical criteria will be just as important as they were when vitalism was finally given up.

Indeed there’s a radical aspect to this. If the criteria of aliveness which worked for biological beings can also be applied to computer viruses, and also be acceptably or justifiably applied, then computer viruses must also be alive. After all, the term “computer virus” was coined precisely because such a thing fulfilled most — or even all — the functional, structural and physical criteria for aliveness.

First-Person Data

Chalmers gives an interesting example of the facts not determining what we say about them. It’s interesting because the status of these particular facts can itself be disputed. In addition, the subject area is one that’s rarely given as an example within this particular philosophical context.

Chalmers’ subject is what he calls “first-person data”. That is, what people say (or report) about their own conscious experiences or mental states. The basic point is that “all sorts of theories remain compatible” with such data,

“from solipsistic theories (in which only I am conscious) to panpsychist theories (in which everything is conscious); from biochemicalist theories (in which consciousness arises only from certain biochemical organizations) to computationalist theories (in which consciousness arises from anything with the right sort of computational organization); including along the way such bizarre theories as the theory that people are only conscious in odd-numbered years (right now, it is 1995)”.

The point here is:

“How can we rules out any of these theories, given that we cannot poke inside others’ minds to measure their conscious experience?”

What’s more, “[a]ll such theories are logically compatible with the data, but this is not enough to make them plausible”.

Now this particular example is problematic because it’s hard to see first-person data as being factual in the first place. That is, even if first-persona data consist in “verbal reports” which are indeed scientifically kosher, it’s still the case that the subject matter of those verbal reports may not itself be scientifically kosher. In any case, the facts alone (in this case) don’t necessitate what we say about them (i.e., our theories, concepts, words, statements, etc.).

But, here again, the facts/what we say about facts opposition can of course be questioned.

Still, what about the case when two people agree on the facts and yet say different things about them? That is, they don’t say different things about what the facts are and what their natures are. What they disagree on is what follows from the facts or how the facts are interpreted.

So, in Chalmers’ example, those in disagreement accept that subject S is having a mental state that, say, involves an experience of a red rose. They agree on this because they agree on S’s verbal reports about his own experiences or mental states. Now to get back to what Chalmers has already stated: that this very experience of a red rose can be explained in terms of a solipsistic theory, a panpsychist theory, a “biochemicalist” theory, a computationalist theory and an odd-numbered years theory. In other words, S’s experience of a red rose (not the red rose itself — if the two can be completely distinguished at all) isn’t doubted and even its nature may be agreed upon. The problem comes when that experience is theorised about — or interpreted — in different ways. In other words, there is an experience of a red rose (or, more correctly, the experience of a red rose is verbally reported); and it may even have a specific nature (despite it being first-person). However, how do we explain the experience itself? How do we account for it?

Eliminativist Materialists vs. Reductive Functionalists

Chalmers gives another example when he compares the positions of reductive functionalism and eliminative materialism. Here again the reductive functionalist and eliminative materialist both (more or less) agree on the facts. However, they still disagree on what Chalmers calls “terminology”. In this case, the eliminativist materialist and reductive functionalist (more or less) agree on the fact that “there is discrimination, categorization, accessibility, reportability, and the the like”. They even (more or less) agree on the philosophical and scientific accounts of such things. Therefore the only thing they disagree on (at least according to Chalmers) is that the reductive functionalist believes that “some of these explananda deserve the name ‘experience’”. The eliminativist materialist, on the other hand, believes that “none of them do”.

If discrimination, categorization, accessibility, reportability, etc. literally are — or literally constitute — experience, then surely experience (or simply the word “experience”) can be eliminated (at least in theory). In other words, experience (or the word “experience”) adds nothing to the pot. So this would mean that disagreement in this case truly is merely verbal.

Of course there may still be what’s called “semantic indeterminacy” when it comes to words like “discrimination”, “accessibility”, “reportability” and “categorization”. (Some philosophers have argued that this kind of semantic indeterminacy exists across the board. Others philosophers have also argued that it can’t exist across the board because such a state of affairs would somehow render communication — and even communal action — impossible.)

Causation

Chalmers even uses causation — or at least necessary causal relations — to highlight the point that theories, concepts, etc. are over and above the facts. This is (it can be supposed) Chalmers’ take on what’s called Humean supervenience (which has been much discussed in analytic philosophy).

Firstly, we have the facts about physical “regularities”. But what if “causation is construed as something over and above the presence of a regularity”? Indeed Chalmers goes so far as to say that “it is not clear that we can know that [causation] exists”.

To be clear, this isn’t really about the strong distinctions which can be made between the many things which supervene and their “supervenience bases”. It’s about the actual “failure of logical supervenience”. More explicitly:

“[F]acts about causation fail to supervene logically on matters of particular physical fact.”

Thus anything we say about the causation doesn’t “logical supervene” on the facts alone. So even causation (like our stipulations about what a cup/book is, what is alive, etc.) are over and above the facts. Does this mean that causation-talk too is merely verbal?

All this depends on what Chalmers means by “causation”.

The 18th century philosopher David Hume would have accepted that B always follows A. However, there’s no necessary link between the two that’s somehow over and above what we observe. Thus if there’s no necessary link, then B simply follows A. After all, Chalmers himself distinguishes causation from “mere succession”. But does this Humean picture automatically mean that we don’t actually have causation at all? Is non-observable (or non-empirical) metaphysical necessity necessarily built into all talk of causation?

In any case, this isn’t really the place to discuss Humean supervenience or even causation. The point is, though, that whatever philosophical position we take on “mere succession” (or causal relations) it will be over and above what it is that’s “behind”, “beneath” or “between” the successions (or relations) we talk about. Basically, what we say about physical (or causal) relations is (or can be) over and above the facts.

Bridge Laws

Philosophers (specifically in the philosophy of mind) often use the technical term bridge laws. Bridge laws are said to tie lower-level phenomena to higher-level phenomena. In the case of the philosophy of mind, facts (since that word has been used a lot in this piece) about the brain are tied to things (not facts) about the mind, experience or consciousness.

Chalmers argues that bridge laws are over and above the facts. This is Chalmers’ own take on bridge laws:

“Some might argue that explanation of any high-level phenomena will postulate ‘bridge laws’ in addition to a low-level account, and that it is only with the aid of these bridge laws that the details of the high-level phenomena are derived.”

Chalmers suggests (or states) that “in such cases the bridge laws are not further facts about the world”. That is, “the connecting principles themselves are logically supervenient on the low-level facts”. In other words, these connecting principles are not facts. (Alternatively, the statements about connecting principles aren’t factual.) Chalmers then gives an obvious and clear example of this: “the link between molecular motion and heat”. Heat simply is what’s called “mean molecular motion”. (Or: heat = mean molecular motion.) Having said that, there are things which can be said about heat which can’t be said about moving molecules. All talk of heat, nonetheless, can still “be derived from the physical facts”. Still, things said about heat are over and above the things said about (mean) molecular motion. What’s more, what’s said about heat doesn’t include “further facts about the world”.

This raises the question:

If not further facts about the world, then further… what?

Chalmers trumps all this fairly uncontroversial stuff with — as one might have guessed — an exception to his general rule: consciousness. In the case of consciousness (so Chalmers believes), consciousness is a “further fact[] about the world”. What’s more, consciousness is not (again) “logically supervenient on the low-level facts”. Consciousness may be empirically and contingently supervenient on low-level facts; though consciousness isn’t logically supervenient on them. That is, no physical facts about the brain (or otherwise) logically entail consciousness; and consciousness doesn’t logically entail any facts about the brain (or otherwise).

*********************************

Facts Matter: A Mouse’s Beliefs and its Conscious Experiences

Here’s another question from Chalmers:

“Does a mouse have beliefs?”

As stated in the introduction, Chalmers often mentions “stipulation”. That is, if we stipulate what we mean by the word “belief”, then the answer to that question must — at least in part — follow from the stipulation.

To simplify, if x, y and z constitute what it is for something to be a belief, then if a mouse displays x, y and z, then it has a belief. This is of course a simplified story. That’s because agreement will have to be made on x, y and z, and then on whether not x, y and z are necessary and sufficient for belief. But however complicated this story turns out, stipulation will still remain part of it. That is, do we believe that (as it were) beliefness (like aliveness) is something over and above the functional, structural and/or physical facts?

Chalmers is keen to accept the importance of stipulation when it comes to such decisions. He also believes — at least as I see it — that much that passes for metaphysics is merely verbal dispute. However, it’s still the case that in some cases (or in one case!) at least there’s a fact of the matter which makes some statements, concepts or theories plain wrong.

Take Chalmers’ own final question:

“Does a mouse have conscious experience?”

In this case, it isn’t all about stipulation or verbal dispute. That is:

“Either there is something that it is like to be a mouse or there is not, and it is not up to us to define the mouse’s experience into or out of existence.”

So it’s not always a case of all the debaters agreeing on the facts; though still disagreeing on what they say about the facts. This time — at least according to Chalmers — the debaters are also disagreeing about the facts. In this example, it’s about whether or not “a mouse [actually has] conscious experience”.

In the previous examples the debaters said different things about the facts; but agreed on the facts. Now the debaters disagree on the actual facts. What’s more, Chalmers believes that “we cannot stipulate [] away” whether or not the mouse has conscious experience or not.

The question is, then, whether or not Chalmers’ position on consciousness really is in a different ballpark to the previous disputes about computer viruses, mice having beliefs, books made out of tissues, bacteria which learn, etc. That is, is a “functional analysis” also acceptable in the case of a mouse’s experiences? Chalmers says “no”.

So my own final question is:

Why is the case of a mouse having — or not having — “conscious experience” so different to the cases already discussed?

Thursday, 10 September 2020

‘Tenet’: Does Christopher Nolan’s Latest Film Make Scientific Sense?

 


Despite all the nitpicking which will follow, there’s absolutely no reason why Christopher Nolan’s scientific name droppings and speculations (in his film Tenet) should be scientifically accurate in every respect. (It can even be argued that they needn’t be accurate at all.) Indeed, Nolan has himself said that he took various liberties in Tenet. (See his later reference to Kip Thorne.)

But what else would anyone expect?

Tenet is a work of art/entertainment, not a piece of scientific research.

So there are many scientific problems with — as well as questions about — Tenet. However, to grind through each one of them would be to verge on both scientific and aesthetic pedantry. And that’s why only the main scientific themes of this film have been tackled in this piece. Namely: entropy, time travel (specifically, the Grandfather paradox) and “parallel worlds”.

************************************

Tenet is a new spy film. It’s directed and written by Christopher Nolan, who previously directed The Dark Knight Trilogy (2005–2012), Dunkirk, etc. More relevantly to the theme of the science in science fiction, Nolan also directed the sci-fi movies Inception and Interstellar.

Nolan took more than five years to write the screenplay for Tenet. Not only that: he worked on some suggestions from the theoretical physicist Kip Thorne. (Kip Thorne had previously offered advice on Nolan’s film Interstellar.) More relevantly, Thorne (in his Black Holes & Time Warps) wrote about going down a wormhole in which

“within a fraction of your second of your own time you will arrive on Earth, in the era of your youth 4 billion years ago”.

Christopher Nolan himself has said that

“Kip Thorne read the script and he helped me out with some of the concepts, though we’re not going to make any case for this being scientifically accurate”.

 

Amateur Film Review


The basic gist of Tenet is that a secret agent called the Protagonist (played by John David Washington) manipulates time (via time travel or “inverted entropy”) to prevent a global catastrophe.

In terms of film criticism, I must disagree with the critic who wrote the following:

“A visually dazzling puzzle for film lovers to unlock, Tenet serves up all the cerebral spectacle audiences expect from a Christopher Nolan production.”

I don’t believe that Tenet is particularly “cerebral”. Apart from the science arguably being weak or at least exaggerated (if that matters at all in a Hollywood film), multiple things happening at once doesn’t necessarily mean that something is cerebral. And I don’t agree with film critic James Berardinelli either when he wrote that Tenet

“may be the most challenging of Nolan’s films to date when it comes to wrapping one’s mind around the concepts forming the narrative’s foundation: backwards-moving entropy, non-linear thinking, temporal paradoxes”.

Although we have a host of technical terms from physics (specifically, the more popular sexy ones) in Tenet, none of these is developed in any way. (There is no strong — aesthetic — reason why they should be developed.) Robert Pattinson’s character, Neil (the Protagonist’s “handler”), for example, mentions the positron. He then mentions Richard Feynman on the backwards time travel of the positron. This is a reference to Feynman’s interpretation — repeat, interpretation (see here) — that the positron as an electron moving backward in time. To state the obvious, there’s a huge leap from this interpretation of a positron (as a electron moving backward in time) to bullets - let alone human beings - moving backward in time. For a start, we’ve moved from the “quantum scale” to the “classical scale”. Having said that, there’s much dispute in science and philosophy as to whether there is such a neat and clean “line in the sand” (an image from the physicist and science writer Brian Greene) between the quantum and classical realms.


Some Scientific Parts of the Plot


Andrei Sator, the Russian oligarch (played by Kenneth Branagh).

In terms of the plot, the Protagonist is led toward a secrete organisation called Tenet. (The word “tenet” itself can be inverted.) In that organisation a scientist called Laura is studying bullets whose entropy has been “inverted”. Such inversion enables bullets to move backward through time. And, of course, it turns out that people can be temporally inverted too.

The plot is thickened by the fact that these counter-entropic bullets have been used by a Russian oligarch by the name of Andrei Sator (played by Kenneth Branagh). And Sator is himself communicating with future persons.

Technically, these inversions are carried out by a machine called a “Turnstile” (which is like an up-to-date version of H.G. Well’s “time machine” or Doctor Who’s TARDIS). The Turnstile itself was created in the future.

In terms of detail, various inverted devices (other than bullets) are said to be the products of a “algorithm” which was also developed in the future. That algorithm is capable of inverting the entire world. Indeed future humans are using Sator — knowing that he’s “mad” enough to do it — to activate it.


Entropy and the Science of Time Travel


Time travel is certainly seen as a possibility by many scientists. Albert Einstein, for example, was keen on this debate and offered his own ideas on the possibility. He even showed us how he believed it could be done. And, many times, Stephen Hawking too entered the arena of time travel.

Despite all that, many other scientists reject time travel. Some of their rejections are purely logical/philosophical. Others are purely scientific. Yet more are both scientific and philosophical/logical.

In terms of possibility, we also have such cases as wormholes (as Kip Thorne mentioned), Kurt Gödel’s rotating universe, black holes, etc.

As for entropy.

At first it will be hard for the average viewer to to see the precise connection between entropy and time travel in the film Tenet. One may understand entropy fairly well. One may also understand time travel fairly well. However, exactly how are these two things tied together in Tenet?

One important point to get out of the way is that in physics all physical processes (or events) are deemed to be time symmetrical. That is, if one plays the film back of a physical event, then such a occurrence would be physically possible. What’s more, the viewer wouldn’t be able to spot the difference between something being played back and something being played forward. However, this is true only of processes (or events) in the quantum realm, not the “classical” realm. In other words, the processes or events involving subatomic particles, their interactions, etc. within a specific experiment (or within a given sample space) can be reversed. However, if a football match were to be reversed, then things would be very different. That is, although a viewer would quickly note the time reversal of a football match, and if that reversed match were real, it still wouldn’t go against any of the laws of physics.

To get back to entropy.

Of course it can be said that the “inversion” of entropy is very different to backward or forward time travel (despite the fact that they’re tightly connected in Tenet). More specifically, rather than increased entropy occurring within the universe, the opposite can occur in any given system. That is, system S can become more ordered over time. But this isn’t so surprising. Many systems become more ordered over time despite the overall entropy of the universe.

This means that entropy applies to the universe as a whole, though not to, say, a bullet (one of the first examples in Tenet).

Of course the fridge is the best-known example of what’s sometimes called “reverse entropy” (“negative entropy”). And when the fridge first became generally available, it even sparked the interest of Albert Einstein. (He applied for a patent.) However, there are no conclusive reasons (as yet) to believe that this is also a question of the the reversal (or inversion) of time.

The problem (or simple fact) is that although a fridge does reverse entropy, it only does so in a “local” and insulted environment (i.e., within an enclosed system). In other words, a refrigerator alone — and even every fridge on the planet — can’t reverse the entropy of the universe. And neither does a single fridge - even in its own local space — make time run backwards.

On a more technical “microscale” than a fridge, scientists have used a strong magnetic field to make the nuclei in hydrogen particles of chloroform get hotter, while their colder carbon partners get colder (see here).

Yet here again there is no reversal of time. (This, of course, depends on what time is taken to be.)

So how does inverting entropy automatically entail going backward in time? And why should all this apply to both going backward in time and going forward in time?


Parallel Worlds


Logically (rather than scientifically) one can conceive of parallel worlds (since such a thing is mentioned in Tenet) in which entropy decreases rather than increases. The important word here is “conceive”. This hints at the fact that this is a philosophical/logical scenario rather than a scientific one (though some/many scientists may disagree). Not only that: since possible worlds (at least in philosophy) are primarily about what’s often called logical possibility (rather than scientific/empirical possibility), this further problematises this issue.

The Tenet character Neil also mentions “parallel worlds”. Here it’s worth making an important distinction (for the layperson) between other dimensions and parallel worlds (or Hugh Everett’s many worlds). Other dimensions are dimensions of our universe. (This is a fundamental part of string theory.) Parallel worlds, on the other hand, may be completely separate from our word. That is, can there really be “causal contact” between parallel worlds and our world? This must surely mean that the only possibility that Tenet can have in mind is parallel dimensions, not parallel worlds. Indeed when it comes to parallel worlds, it’s hard to make sense of the word “parallel” at all. These worlds simply can’t be parallel to our world. (Of course perhaps no one is expected to take the word “parallel” literally.)

And just as a distinction has just been made between parallel dimensions and parallel worlds, so a distinction can also be made between the many worlds (of many-worlds theory) and the other “universes” of a multiverse. In many-worlds theory, the possibility of causal — or other kinds of — contact between our world and other worlds is accepted — at least by some scientists. (See also brane cosmology.) However, when it comes to our universe and other universes (or a “bubble universe”) in a multiverse, that isn’t usually accepted by scientists (although there is some talk of “colliding” universes).


The Grandfather Paradox


One of the main characters in Tenet mentions the Grandfather paradox. This has it (in basic terms) that a person goes backward in time to kill his own grandfather. Yet this act seemingly makes it impossible for him to do such a thing in the first place. That’s because, were he to be successful, then he wouldn’t exist. In other words, it would never have been possible for him to go back and kill his own grandfather had his grandfather already been killed (i.e., by this person as a time-traveler).

The Protagonist asks which paradoxical possibility is true when it comes to the Grandfather paradox. Neil (the Protagonist’s handler) answers by saying that none is true because “that’s the nature of paradoxes”. This seems like a cheap and easy way to bypass the philosophical — and, perhaps more relevantly, scientific — problems with this aspect of time travel.

In Tenet, however, we have much more than mere backward or even forward time travel. We also have all these things happening at the same “time”. Not only that: the same person exists at the same time as… well, two people. So Tenet presents us with multiple juxtapositions of time travel. Take these:

1) Moving from (our) present to the future. 
2) Moving from (our) present to the past. 
3) Moving from the future to (our) present. 
4) Moving from the future to (our) past. 
5) Moving from the past to (our) present. 
6) Moving from the past to (our) future.

And no doubt I’ve left some options out here.

Thus the Protagonist — as he exists in the present — is in the same scene (or time) as the Protagonist as someone who’s traveled back to the present from the future. However, since all time must be relative in this film, it must be difficult for the viewer — and the world itself - to tell what is the present.

One other example (of many) in which the same person exists as two people in the same scene is when Sator (the Russian oligarch) arrives at a location only to see his inversion (i.e., himself) leaving that very same location.

One final example of different types of time travel occurring at the same “time” occurs when troops carry out a “temporal pincer movement” in which one set of troops moves forward in time and another set moves backward in time. It’s difficult, however, to understand both what this means and how it’s possible. In terms of the visuals of Tenet itself, this is simply backward and forward movement in the same visual scene. Yet in this sci-fi scenario we’re supposed to have backward and forward time-travelling occurring in the same place and at the same “time” — at least as it’s presented to the viewer. Thus, in that case, wouldn’t we have three spacetimes at the same… well, time? That is, in the present time and place we’d have one set of troops moving backward in time and another set of troops moving forward in time. In addition, all this would be occurring in the same phenomenological (as it were) “timeless present” (i.e., from the point of view of the viewer).

It can be supposed that we could have different things happening in different spacetime slices of the same overall spacetime totality. That is, within spacetime area A, we’d also have spacetime area x and spacetime area y. (Having put that possibility, I doubt that this was the conscious intention of the Christopher Nolan or of anyone else.)

Ironically, despite all these attempts to change the past, the character Neil says (more than once) that “what happened, happened”. This seems to be a hint (or a plain statement) that the past simply can’t be changed..

Of course one solution to all this is not to argue that the past can be changed or that it can’t be changed. Instead, event x happened in the past and a time traveler goes back to just before event x in order to stop it from happening in the first place. However, when he does stop it from happening, what actually happens is that event x still happens in our world; though it doesn’t happen in a “parallel world”… But what’s the point of that? This still means that event x occurred in our world. And, as many philosophers and scientists have said, what do these other worlds have to do with us?

Friday, 7 August 2020

Jaina Seven-Valued Logic and Contemporary Dialethic Logic

Top image: the symbol of Jainism.


Contents:

i) John Barrow’s Translation of Jaina Seven-Valued Logic

ii) The Seven Values of Jaina Logic

iii) On Accepting Inconsistent Scientific Theories
iv) Graham Priest’s Boundary
v) A & ¬A: Epistemic or Ontological?
vi) Conclusion: The Philosophy of Jaina and Dialethic Logics


Jaina seven-valued logic was first developed by Jain philosophers in ancient India. These seven different values have actually been taken to be different truth values. They’ve been taken that way primarily because the sentences which express them can be seen as the expressions of different truth values (e.g., “Arguably, it exists” or “Maybe it is indeterminate”).

This Jaina system of truth values is referred to as syādvāda. The earliest reference to syādvāda can be found in the writings of Bhadrabahu (c. 367 — c. 298 BC).

Jaina seven-valued logic has also been taken to support a religious and philosophical “theory of pluralism”. That ties in with this piece’s stress on epistemology, rather than on ontology. That is, giving an epistemological and religious (in the case of Jainism) stress on pluralism can be seen in contemporary philosophical terms as both stressing logical pluralism and the indeterminate (or undecided) nature of our epistemic positions. (This logical pluralism isn’t about different logics in the plural; but a plurality of truth values within a given system of logic.

So what about dialetheism?

Dialetheism is the view that there are statements (or propositions) which are both true and false. In more detail, dialetheism has it that there can be true statements whose negations (see final section) are also true. The philosopher and dialethic logician Graham Priest defines dialetheism as the view that there are “true contradictions” (or dialetheia).

Now of course it’s not wise to create a (logical) equivalent of Fritjof Capra’s book The Tao of Physics by artificially squeezing dialethic logic into Jaina logic (or vice versa). However, since Graham Priest himself (as a dialethic logician) is well aware of Jaina logic, this may not be such a bad thing. So perhaps it can be said that dialetheism’s philosophical and logical positions are similar to some (or all) of the Jaina values.

More specifically to this piece, Priest stresses (as will be shown later) the acceptance of inconsistent logical systems and scientific theories by logicians and scientists — and that itself can be seen as as a kind of logical and theoretical pluralism.

The dialethic position on truth is also similar to that of the Jaina principle anekānta (“many-sidedness”). This school of Jaina philosophy also used the word naya; which is sometimes translated as “the partial expression of the truth”. In addition, in Buddha’s Middle Way the answers “it is” and “it is not” (to any given — philosophical? — question) are seen to be too extreme. Indeed, like dialetheism, Mahāvīra taught people to accept that A (i.e., a given state of affairs) both “is” and “is not” — or at least that people should acknowledge that “maybe” (see next section) A both is and is not.

John Barrow’s Translation of Jaina Seven-Valued Logic








I first came across a reference to Jaina seven-valued logic in a book by the cosmologist, theoretical physicist and mathematician John D. Barrow. This reference is in the form of a note in Barrow’s book Pi in the Sky.

It turned out that Barrow’s version (or translation) of those seven values is expressed in a way which is a little unlike some of the other translations which can be found (as will become clear later). Still, Barrow’s version (or translation) has the virtue of simplicity. 

Barrow introduces the seven values in this manner:
“In a non-Western culture like that of the Jains in ancient India one finds a more sophisticated attitude towards the truth status of statements. The possibility that a statement might be indeterminate is admitted as well as the possibility that uncertainties exist in our analysis. These would correspond to statistical statements in which we simply give the likelihood that a certain statement is true or false. Jaina logic admits seven categories for a statement which reflect both its intrinsic uncertainty and the incompleteness of our knowledge of it.”
He then both numbers and translates the Jaina values:
(1) maybe it is;
(2) maybe it is not;
(3) maybe it is, but it is not;
(4) maybe it is indeterminate;
(5) maybe it is but is indeterminate;
(6) maybe it is not but is indeterminate;
(7) maybe it is and it is not and is also indeterminate.
The first mention of Jaina seven-valued logic dates back to c. 433–357 BC; which is also roughly 40 years before the birth of Aristotle. Yet it can be argued that a many-valued logic was seen in Western culture before the 20th century. After all it was Aristotle (384–322 BC) himself who first recognised the reality of statements with indeterminate truth values. (The sorites also date back to the ancient Greeks.) Still, Aristotle’s indeterminate “future contingents” particularly refer to future states of affairs, not to present ones (as is the case with Jaina values). 

In any case, come the 20th century there was a host of many-valued logics on offer in the West. And it can be argued that some positions within them restate (if in new ways) the seven values of Jaina logic.

The obvious point to make about the seven values of Jaina logic is that they don’t include the words true and false. Initially this seems odd when considering the fact that they’re taken to be truth values. Indeed not even (1) (“maybe it is”) and (2) (“maybe it is not”) can really be taken to be translations of true and false. The main reason for this is that every expression begins with the word “maybe” — and clearly that makes all the difference. 

Dialetheic logic, on the other hand, does accept and use the values true and false, even if it places them together in a conjunction of contradictions: namely, A & ¬A. (Other 20th century logics had three — or more — truth values.)

If we return to the “maybe” of Jaina logic.

The Sanskrit doctrine of naya is the idea that there are many partial perspectives of any given p (statement/proposition) or A (state of affairs), and none of which can be taken as containing the whole truth. More broadly, Jaina seven-valued logic has been taken to support a “theory of pluralism” (see anekāntavāda). So, clearly, the word “maybe” is essential for all seven values of Jaina logic. And, later, it will be argued that it is — at least in part — a normative use of the word “maybe”.

The other point worth making is that it’s been argued that there are only really three (not seven) basic values in Jaina logic: namely, true (T), false (F) and unassertible (U). These words are simplifications of (1) to (3) above. Yet surely the basic values are actually “maybe it is”, “maybe it is not” and “maybe it is indeterminate” (or “maybe it is unassertible”), not true, false and indeterminate. This means that the seven values of Jaina logic seem to intentionally steer us away from the words true and false (for the epistemic, normative and pluralist reasons already mentioned). 

In any case, the argument is that (4), (5), (6) and (7) are a combination of (1), (2) and (3). That is, (1), (2) and (3) produce TF (true and false), TU (true and unassertible), FU(false and unassertible), and TFU (true, false and unassertible). But, as already stressed, the words “true” and “false” shouldn’t be used at all as translations of the Jaina values. And, again, the main reason for this is down to the modifier “maybe” (i.e., syat in the Sanskrit). 

The Seven Values of Jaina Logic








As expressed (or translated) by John Barrow (though not as expressed or translated elsewhere), Jaina seven-valued logic is about statements (e.g., Barrow writes “seven categories of statement”); which in the following (though not in Barrow’s translation) are symbolised by the letter p. The following sentences can also be taken to be about a possible (or actual) state of affairs; as symbolised by the letter A.

So let’s take each expression of Jaina values one at a time:
(1) Maybe it is.
In terms of a proposition (or statement): 

Maybe p is true. 

Or: 

It is possible that p is true; though we don’t know that p is true. [In modal logic: ◇p.]

In terms of a state of affairs: 

Maybe A is the case.

The above is epistemic in nature because it’s saying that maybe A is the case; though we don’t know that A is actually the case. [◇A]
(2) Maybe it is not.
Everything said in (1) above can now be said about (2). In this case, we simply substitute the words “is the case” with the words “is not the case”. (Or, in terms of p, we can substitute the words “is true” with “is false”.)
(3) Maybe it is, but it is not.
This is a difficult one to decipher. In propositional terms, we have: Maybe p is true; but p is not true. 

Or: Possibly p is true; but p is not true. [◇p]

In terms of a state of affairs: Maybe A is the case, but A is not the case. 

To translate again: 

Maybe A could possibly be the case. However, A is not the case. [◇A]

So it’s not being claimed that A “is not”. The idea is that it’s possible that A is not. The point being that we don’t know if A is or is not the case. In epistemic terms, we may well have good reasons to believe that A is the case. However, it still could be be that A is not the case. This means that, as yet, we haven’t enough information to establish that A actually is the case. And because of that, it’s still possible that A is not the case.
(4) Maybe it is indeterminate. 
To discuss this in terms of propositions (or statements), that means that, as yet, we can’t decide whether p is true or p is false. In other words, p’s truth value is undecided or indeterminate. So does p have a truth value if its value is undecided or indeterminate? (That raises questions which can be found in the realism vs. anti-realism debate.) As it is, one can argue that if p is indeterminate, then it can’t have a truth value — that is unless indeterminate itself is a truth value (as with “non-assertible” later). 

On the other hand, epistemically p may not have its truth value “given to it” (or established) by persons; though, in (ontologically) realist (or platonic) terms, it may still be either true or false. 
(5) Maybe it is but is indeterminate.
This is difficult to grasp. It is, however, similar to (4) above. That is, p may be true. However, as yet p’s truth (or A being the case) is indeterminate to the speaker or theorist. p could have a truth value; though we don’t know its truth value. Similarly, A may be the case; though we don’t know whether A is the case.
(6) Maybe it is not but is indeterminate.
This is the same as (5) above except that it it raises the possibility of p’s falsehood (or A not being the case).
(7) Maybe it is and it is not and is also indeterminate.
This is the most difficult to comprehend of all seven Jaina values. It appears to embrace a dialethic position in that it is an acceptance that A both is the case and that A is not the case. However, the modifier “maybe” changes everything.

The question is: How does the final clause “and is also indeterminate” change — or add to — (if at all) the opening clause “maybe it is and it is not”? Does this mean that p is indeterminate simply because we don’t know whether it is true or false? Or is it indeterminate because it is both true and false? However, if we know that it is both true and false, then how can it be indeterminate? In other words, it can be a determinate matter that p is both true and false. 

So can a contradiction really be determinate? And how is both the truth and falsity of p established?

With (7) we have an ostensibly ontological statement (or opening clause). That is, the phrase “maybe it is and it is not” seems to be telling us that maybe p is both true and false. Therefore (surely) something about the world must make it both true and false. 

It could be, however, that the phrase “maybe it is and it is not” is not ontological at all. It could simply be saying not that A both is and is not the case; but that for all we know A may be the case, or A may not be the case. (Alternatively, maybe p is true or maybe p is false.)

So now here’s the other translation (mentioned earlier) of the seven values of Jaina logic:
(1) Arguably, it [that is, some thing] exists. [Syad asty eva.]
(2) Arguably, it does not exist. [
Syan nasty eva.]
(3) Arguably, it exists; arguably, it doesn’t exist. [
Syad asty eva syan nasty eva.]
(4) Arguably, it is non-assertible. [
Syad avaktavyam eva.]
(5) Arguably, it exists; arguably, it is non-assertible. [
Syad asty eva syad avaktavyam eva.]
(6) Arguably, it doesn’t exist; arguably, it is non-assertible. [
Syan nasty eva syad avaktavyam eva.]
(7) Arguably, it exists; arguably, it doesn’t exist; arguably it is non-assertible. [
Syad asty eva syan nasty eva syad avaktavyam eva.]
As stated earlier, in the translation (or version) directly above, Jaina seven-valued logic is a set of sentences about a thing (or an “object”), not about statements (or propositions). Thus, in that simple sense, this is ontology, not logic or epistemology. Having said that, virtually everything said about statements (or propositions) can now be said about these statements about a thing. Moreover, Barrow’s own translation (or version) can also be read as to be about things, not about statements. (Barrow himself says they are about “statements”.) And since the following seven translations state such things as “arguably, it is non-assertible”, then they too can be read as being about statements, not about a thing (though they’re still statements about a thing). Or, more precisely, (1) to (3) are ontological in nature; and (4) to (7) are epistemic (e.g., they use the phrase “non-assertible”). As for the term “non-assertible” in the above, it is equivalent to Barrow’s word “indeterminate”.

There’s not really much more one can add to this translation or version. Nonetheless, the modifier “arguably” seems to stress — even more so than the word “maybe” — the epistemic nature of these seven values. Put simply, one can argue that some object (or thing) either “exists” or that it “does not exist”. Or, more epistemically, the claim “x exists” is “non-assertible”; as is the claim “x does not exist”. That is, as yet, the theorist has no epistemic right to assert that either “x exists” or that “x does not exist”.

On Accepting Inconsistent Scientific Theories








Professor Bryson Brown (in his paper ‘On Paraconsistency’) states the importance of inconsistency for dialetheism. (He also says that dialetheists are “radical paraconsistentists”.) He writes:
“[Dialetheists] hold that the world is inconsistent, and aim at a general logic that goes beyond all the consistency constraints of classical logic.”
Brown continues by saying that dialetheists “view these paradoxes as proofs that certain inconsistencies are true”… But true of what? True only of the paradoxes themselves or true of the world? (Of course the paradoxes also exist in the world — if in an abstract or platonic world.)

So what about Graham Priest’s position on consistency? He writes:
“[W]e all, from time to time, discover that our views are, unwittingly, inconsistent.”
When discussing the virtue of simplicity, Priest also asks the following question:
“If there is some reason for supposing that reality is, quite generally, very consistent — say some sort of transcendental argument — then inconsistency is clearly a negative criterion. If not, then perhaps not.”
As dialethic logicians have stated, we can accept inconsistent scientific theories if they still prove to be useful and have predictive consequences. In fact scientists (especially physicists) have been fine with this situation for a long time. Priest puts it this way:
“Inconsistent theories may have physical importance too. An inconsistent theory, if the inconsistencies are quarantined, may yet have accurate empirical consequences in some domain. That is, its predictions in some observable realm may be highly accurate. If one is an instrumentalist, one needs no other justification for using the theory.”
Bryson Brown also says that
“our best theory of the structure of space-time, Einstein’s general theory of relativity, is inconsistent with our quantum-mechanical view of microphysics”.
Brown also mentions the Danish quantum physicist Niels Bohr within this context. So did Bohr believe that there were inconsistencies — let alone contradictions — actually in the world? Philosophers have disagreed on this. However, it can be argued that Bohr might have found it difficult to grasp what an inconsistent world (or any aspect of the world) would — or could — be like. This is at least the case when it comes to worldly contradictions. That is, it is hard to see how [A & not-A] can be the case at one and the same time. So this means that we need to decide if embracing theoretical inconsistencies (in science, logic, etc.) also means embracing worldly contradictions

Bryson Brown also acknowledge the fact that, in general, we “accept non-trivial but inconsistent obligations and/or beliefs”. Here again this is an epistemic matter. More explicitly, it isn’t the case that we believe that “Cats have tails” and “Cats don’t have tails” at one and the same time. No one believes that an individual cat both has a tail and doesn’t have a tail. So, in that case, A works in one context; and ¬A works in another context. In other words, “cats have tails” (which, grammatically, doesn’t entail “All cats have tails”) is about cats in the plural; whereas any statement about an individual cat won’t be about all cats. Yet an individual cat both having and not having a tail means that the statements “Cats have tails” and “Cats don’t have tails” are both true. (This, admittedly, is also about cats in the plural.)

The existence of inconsistencies is also a matter of embracing Jaina values. After all, if a scientist accepts an inconsistent theory, that will partly be because for any given A (i.e., state of affairs) or p (i.e., statement or proposition) within that theory, it “maybe” or “maybe it is not”. Similarly, when it comes to p or A, “maybe it is, but it is not”. This results in also accepting Jaina value (4): “maybe it is indeterminate”. What’s more, if A or p is indeterminate, then it also follows that (5) “maybe it is but is indeterminate” and/or (6) “maybe it is not but is indeterminate”. That is, maybe A or p is; though it is still indeterminate to the theorist. Similarly, maybe A or p is not; though it is still indeterminate to the theorist.

In Priest’s terms, this truth-value indeterminacy (though p’s being indeterminate is itself be seen as a truth value) results in a scientific theory (or logical system) being inconsistent. And that inconsistency is a result of the logician or scientist being unable (at least at a given point in time) to erase certain inconsistencies from his system or theory. (This is something that’s often been said about Bohr’s well-known model of the atom.)

Despite all the above, deriving the notion of an inconsistent world from psychologistic and/or epistemological limitations (perhaps also from accepted notions in the philosophy of science) is problematic. Sure, this stress on the world here may betray a naïve, crude and, perhaps, old-fashioned view of logic. Having said that, Priest himself does mention the world (or “reality”) when he talks of consistency and inconsistency.

As it is, I simply can’t see how the world can be either inconsistent or consistent (see conclusion).

Graham Priest’s Boundary








It’s also helpful to apply Jaina seven-valued logic to an example which Graham Priest (again) discusses. Priest writes:
“Consider, for example, the boundary between the interior of a room (that which is in it) and the exterior (that which is not in it). If something is located on that boundary, is it in the room or not in it?”
Strangely enough, all the values of the Jaina system are helpful here. To spell the Jaina logic (as applied to a boundary) out in detail:
(1) Perhaps [or “maybe”] boundary x is in room 101.
(2) Perhaps boundary
x is not in room 101.
(3) Perhaps we believe that boundary
x is in room 101; but it is not in the room 101.
(4) Perhaps boundary
x is indeterminate. [Or: Perhaps the answer to the question is indeterminate.]
(5) Perhaps boundary
x is in room 101; but this is an indeterminate state of affairs.
(6) Perhaps boundary
x is not in room 101; but this state of affairs is indeterminate. [Or: Perhaps the answer to the question may be indeterminate.]
(7) Perhaps boundary
x is in room 101, boundary x is not in room 101, and this state of affairs is also indeterminate.
As stated earlier, values (1) to (5) are fairly (!) easy to comprehend. However, values (6) and (7) are problematic; at least as they’re expressed in this particular translation.
Priest himself offers us a dialethic solution (or answer) to the questions about this boundary. He writes:
“[T]he boundary is symmetrically placed with respect to each of its sides; so the only possibility that Reason countenances is a symmetric one. Thus, the object on the boundary of the room is both in it and not in it.”
Priest’s conclusion is equivalent to Jaina value (7). That is: 
Perhaps boundary x is in room 101 and boundary x is not in room 101. 
Jaina value (7) also has the clause “and this situation is also indeterminate” at the end of it. So what about boundary x being neither in room 101 nor outside room 101? This conclusion (kind of) deflates the dialethic conclusion in that rather than accepting the state of affairs that boundary x both is and is not in room 101, Jaina logic has it that an answer to this question is simply “indeterminate” (or “non-assertible”). This surely means that the Jaina position is far less (as it were) radical than Priest’s dialethic conclusion. Indeed one can even deflate the Jaina deflation itself and say that all that “indeterminate” means (in this instance at least) is that no answer will be (or can be) forthcoming — except, perhaps, via stipulation. If anything, the problem is “merely verbal” and it has no ontological import. (See David Chalmers on ‘Verbal Disputes — Questions of Language vs. Fact’ here.) In other words:

1) We can say that boundary x is in room 101.
2) We can
say that boundary x is outside room 101.
3) And we can
say that boundary x is neither in room 101 nor outside room 101.
The everyday definition of the word “boundary” has it that a boundary bounds something that isn’t itself part of the boundary. Nonetheless, a boundary can also be seen as being part of the something it bounds. For example, the boundary of the United Kingdom (or a football stadium) is part of the United Kingdom (or the football stadium). I believe that these conclusions square better with Jaina logic than with dialethic logic. After all, dialetheism has it that there are contradictions in the world; whereas Jaina logic simply says maybe this or maybe that (i.e., neither A nor ¬A are “assertible”).

Priest gives another example of “vague boundaries”: radioactive decay. He writes:
“[S]uppose that a radioactive atom instantaneously and spontaneously decays. At the instant of decay, is the atom integral or is it not?”
Priest continues:
“In both of these cases, and others like them, the law of excluded middle tells us that it is one or the other.”
What is Priest’s own logical conclusion when it comes to atomic decay? He claims that the aforementioned atom “at the point of decay is both integral and non-integral”. This isn’t allowed — Priest says — if the law of excluded middle is adhered to. The law of excluded middle tells us that the said atom must either be integral or non-integral; not both integral and non-integral.

This appears to be a temporal problem which must incorporate definitions — or philosophical accounts — of the concepts [instantaneously] and [spontaneously]. In other words, couldn’t the atom be neither integral nor non-integral when it instantaneously and spontaneously decays? Or, alternatively, at that point of decay, x (whatever it is) may not be an atom at all.

So what about the Liar sentence?





The fact that dialetheism might have been partly (or even largely) motivated by the well-known semantic paradoxes is relevant here. Take these two sentences; in which 1) is often taken to be the “formal” (or “syntactic”) expression of 2):
1) L: This sentence [L] is false.
2) [As said by a Cretan.] “All Cretans are liars.”
Like the boundary case, dialethic logicians argue that L is both true and false. Unlike the boundary example, however, this doesn’t seem to be a simple question of the merely verbal… That is, we can decide (or stipulate) as to whether or not a boundary x is inside or outside room 101. (Or we can argue that it is neither.) None of these things change reality in any way or even change how we perceive reality. At first glance, however, L doesn’t seem to be about reality at all. It’s a sentence which refers to itself. (Of course this sentence is also part of reality.) In that sense, the answer (or problem) seems to be purely formal or syntactic. Another way of putting this is to say that, unlike the boundary case, deciding whether or not L is true, false, true and false, or neither true nor false doesn’t seem to be a definitional (or stipulational) situation… Or is it? The way to answer questions about L is to go through the logic. When it comes to boundary x, on the other hand, it’s not clear that logic will help.

A & ¬A: Epistemic or Ontological?



Graham Priest 





Jaina seven-valued logic seems less radical than dialethic logic. However, one can also give dialethic logic a purely epistemic (or deflationary) reading. Specifically, Priest’s position on Boolean negation may parallel (to some extent at least) to Jaina truth value (7). Namely: “ Maybe it is and it is not and is also indeterminate.” So perhaps “maybe it is not” isn’t actually a Boolean negation of the “maybe it is”. In other words, maybe it is something less than outright negation. Priest himself explains why that may be the case. He writes:
“Even dialetheists, after all, need to show that they don’t accept that 1 = 0. Now, if ¬A is compatible with A, then asserting ¬A cannot constitute a denial. To deny A one must assert something that is incompatible with it; so Boolean negation must make sense.”
Priest then offers a purely epistemic explanation of all this. He concludes:
“To deny A is simply to assert its negation. But this cannot be right. For example, we all, from time to time, discover that our views are, unwittingly, inconsistent. A serious of questions promps us to assert both A and ¬A. Is the second assertion a denial of A? Not at all; it is conveying the information that one accepts that ¬A, not that one does not accept A.”
This is primarily about belief, acceptance and consistency. It’s also about psychological states, judgements and logical (or scientific/theoretical) consistency. It’s not — at least not directly — about the world itself… Well, except that ontology (or what we say about the world) is dependent on our psychological states, beliefs and on logical (or scientific/theoretical) consistency. Yet if all this is correct, then not even dialethic logic is radical. In other words, dialethic logic is primarily a form of logic designed for the evaluation and logical systematisation of scientific theories. It’s also a logic of belief, judgements and — more generally — the relative merits of (the varying degrees of) consistency found in our logical, scientific, etc. systems.

The more radical and interesting aspect of dialethic logic is expressed by Priest in the following:
“A series of questions prompts us to assert both A and ¬A for some A.”
This seems to chime in with Jaina true value (7):
“ Maybe it is and it is not and is also indeterminate.”
In Priest’s example, perhaps it’s wise to assert both A and ¬A if both A and ¬A appear to be the case; or if both have (almost) equal evidential, logical and/or philosophical weight. And that goes for the Jaina locution, “ Maybe it is and it is not and is also indeterminate.” Nonetheless, at the end of the day most people (though not Jaina pluralists) would hope that either A or ¬A will prove to be the case (or perhaps simply become more acceptable). Our initial acceptance of A and ¬A, in other words, isn’t a commitment to the “inconsistency of the world” (as Priest puts it). And Jaina logic can be read as taking the position (which isn’t itself purely logical) that we can never know that the world itself is inconsistent. Priest, on the other hand, argues that contradictions exist in the world. Despite that, the position advanced in this piece is that our acceptance of [A & ¬A] tells us more about us than it does about the world.

So let Priest himself continue. He asks us this question: 
“Is the second assertion [¬A] a denial of A?” 
Yes, it seems so. Priest disagrees. Priest finishes off by saying that ¬A 
“is conveying the information that one accepts ¬A, not that one does not accept A”. 
In terms of classical logic, this is false. However, if we cite two propositions — then, yes, my acceptance of the proposition “Jones killed himself” doesn’t mean that I must also deny the proposition “Jones was shot”. (This isn’t Boolean negation.) In tandem with my remarks about equal evidential or logical/philosophical weight, my acceptance of “Jones killed himself” doesn’t mean that I will — or that I must — also deny the proposition that “Jones was shot”.

In addition, the proposition “Jones killed himself” isn’t a strict (or clear-cut) negation of “Jones was shot” (i.e., it's not a Boolean negation). A strict and clear-cut negation of “Jones was shot” would be “It’s not the case that Jones was shot”, not “Jones killed himself”. “Jones killed himself” can be seen as some sort of denial — or rejection — of the other proposition; though it’s not a strict Boolean negation. This rejection of Boolean negation appears to explain Priest’s acceptance of a dialethic… what?
In other words, if the symbolised state of affairs A ¬A is seen as including only the autonym A (i.e., a self-referential symbol without content), then clearly that statement can’t be accepted. Only they aren’t autonyms in Priest’s book. They are the dialethic acceptance of “contradictories” (i.e., symbols with worldly content).

Going back to the Priest quote directly above, one must now ask why a genuine (i..e, non-epistemic) dialetheist must reject 1 = 0. Isn’t accepting 1 = 0 at least one (logical) conclusion of dialetheism? However, if it’s incorrect to accept 1 = 0 (as Priest argues), then why is it correct to accept that boundary x both is inside and outside room 101? (Or that the Liar sentence is both true and false?) Why are numbers making all the difference here? Is it down to the simple identity sign (i.e., =) in the equation 1 = 0? That is, is it because we don’t say the following? - 
1) L: This sentence [L] is true. = l: This sentence [L] is false.
2) Boundary
x is in room 101.= Boundary x is not in room 101.
Does that make all the difference? Yet aren’t these identities at least implicit in the dialethic positions on the Liar sentence and on the boundary of room 101? In that case, what if we apply Gödel numbers to the boundary scenario? Thus:
i) Boundary x is inside room 101. = 1
ii) Boundary
x is outside room 101. = 0
Thus, in dialethic logic, 1 = 0. 

Conclusion: The Philosophy of Jaina and Dialethic Logics


Anekāntavāda (“many-sidedness”) refers to the Jain doctrine about metaphysical truths that emerged in ancient India. It states that the ultimate truth and reality is complex and has multiple aspects. Anekantavada has also been interpreted to mean “non-absolutism”, “intellectual Ahimsa” and religious pluralism.






The primary distinctions made above are between ontology and epistemology. Put simply, the seven-valued logic of the Jains is epistemological, not ontological. That is, it’s about what we know or can know, not about what is.

The overall position — and perhaps the Jaina position — on these issues is similar (or parallel) to Baruch Spinoza’s philosophical point that the world can only… be. Thus:
“I would warn you that I do not attribute to nature either beauty or deformity, order or confusion. Only in relation to our imagination can things be called beautiful or ugly, well-ordered or confused.”
The world itself can’t instantiate inconsistencies, let alone contradictions; though our systems and theories most certainly do. True; Priest explicitly states that it may be “rational to accept a contradiction”. He also goes on to say that 
“there is nothing to stop the person accepting both their original view and the objection put to it, which is inconsistent with it”. 
Yet talk of acceptance (or non-acceptance) seems psychologistic or epistemological in character, not logical and/or ontological. In other words, the predicaments of our epistemological and psychological positions shouldn’t be read into the world.

Yet one can also take an anti-realist and positive position on dialethic logic. 

Since we only have access to the world via our contingent concepts, theories, systems, sensory receptors, etc., then that may impact on the issue of dialetheists embracing contradictions. That is, since some/many scientific, philosophical and logical theorists accept inconsistencies and even outright contradictions (for whichever reasons), then these systems and theories may pass on (as it were) their inconsistencies or contradictions to the world. In other words, if we get to the world through inconsistent or even contradictory theories and systems, then surely the world must itself be inconsistent or even instantiate contradictions.

Yet it needn’t be the case that an anti-realist should embrace contradictions or inconsistencies in the world. And that’s the case precisely because he’s an anti-realist. After all, if we can never know the world “as it is”, then how can we also know that the world instantiates inconsistencies or contradictions? Here again what we have is classic anti-realism: these inconsistencies or contradictions tell us more about us (or at least about our systems and theories) than they tell us about the world “as it is in itself”. So it may well be the case that we require inconsistent and even contradictory theories and systems to get at the world. However, that doesn’t tell is that the world itself is inconsistent or contradictory.