According to Quine,
Bertrand Russell (as well as others) confused “if-then” with “implies”.
Quine said that
“there
is much to be said for the material conditional as a version of
'if-then', there is nothing to be said for it as a version of
'implies'…”
We can now say:
material conditional =
‘if... then’
material conditional ≠
implies (or “If A, then A implies B”)
Rudolph Carnap makes this
position clear by analysing English usage. He argues:
“to imply” = “to
contain” or “to involve”
Clearly this means that
in English ‘implies’ isn't that unlike Kant’s position that in an analytic
subject-predicate expression the subject-term’s concept ‘contains’
the predicate-term’s concept. Or, more generally, we say that “A
implied B” because in the expression of A we can
find (as it were) - after analysis - the implied B. Thus when someone implies
B with A, he doesn't want to stop people concluding B.
He simply doesn't want to state B. Thus we can say that A ‘involves’
B, as Carnap does.
All this is in
opposition, so Quine and Carnap thought, to logical consequence:
logical consequence ≠
A implies B
This, Quine argues, is
what Russell called ‘implication’. It left
“no
place open for genuine deductive connections between sentences”.
Although Quine rejected
the linguistic notion ‘implies’ (i.e., “A implies B”),
he still believed that deductive connections were still “between
sentences”, not between abstract or concrete objects (i.e., propositions and suchlike).
We can now ask if
p ⊃ q =
p implies q
According to Carnap and Quine, it doesn't. We can now add:
deductive connection =
logical consequence
Finally
implication relation
≠ consequence relation
Even if we study everyday
English language, we can still clearly see a distinction between
the words ‘implies’ and “was a consequence of”. We can say
i) “John implied B
by saying A.”
though we can't say:
ii) “B is a
consequence of what John said [A].”
or
iii) “John didn't
say B; though it's a consequence of what he said [i.e., A].”
We usually take the word
‘consequence’ as a consequence-relation between B and A.
That is
iv) “B is a
consequence of A.”
Thus consequence can be a
causal connection, as in:
v) “The consequence
[B] of John holding that meeting [A] is that there were riots on the
streets [B].”
Clearly when we say “John
implied B by saying A”, this isn't a causal
connection of any kind. It is, in a Kantian way, an instance of the
conceptual containment of B in A. Thus we can say that
the concept [person] is contained in the concept [philosopher].
Linguistically, we can have the following:
Linguistically, we can have the following:
“Child-killers are
animals.”
Thus
if someone said the above, it would imply that child-killers aren't
human beings. Thus:
the concept [non-human
being] = the concept [animal]
Even if the concept
[non-human being] isn't identical or even synonymous with [animal], we can
still loosely claim that
“He implied that
child-killers aren't human beings when he called them ‘animals’.”
This situation is
complicated by the fact that Carnap continued to believe that
i) a material
conditional = an implication
and didn't believe that
ii) logical
consequence = an implication
Thus we need to ask:
What, exactly, is a logical consequence?
For example, is
p ⊃ q
a case of logical
consequence (i.e., q’s being a logical consequence of p)?
Or is it an implicational conditional in that q is implied in
p? Clearly, because of our prior look at the English language,
we can now say that it doesn’t seem right to say that “p
implies q”, “q is implied by p” or that “q
is the implication of p”. Thus we can intuitively see Quine
and Carnap’s point before any logical distinction is made.
A logical consequence
relation is a relation of entailment, not one of implication. Thus in
p ⊃ q we can say that “p entails q” or
that “q is an entailment of p”. An implication
isn't the same as a logical consequence. Though does the notation p
⊃ q represent an entailment relation? Actually, entailment is said to be expressed
by something stronger.
The notation p ↔ q
symbolises entailment. That is, “p entails q”; or
“p iff q”. Thus:
i) p ↔ q
= entailment relation
and
ii) iff (if and
only if) = is part of an entailment relation
References
Carnap, R. (1934) The
Logical Syntax of Language
Marcus, Ruth (1990) 'A
Backward Look at Quine's Animadversions on Modalities', in Philosophy
of Logic, edited by Dale Jacquette.Quine, W.V. O. (1961) 'Reply to Professor Marcus'
No comments:
Post a Comment